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above and below the normal positions of the layer lines be- 
cause of a-axis fluctuations on the a-axis oscillation photo- 
graphs. This explanation of arcing phenomena is contrary 
to the experimental observations of Lal & Trigunayat 
(1970, 1971) which showed an increase in arcing or the 
formation of new arcs on heating the solution-grown 
CdI2 crystals at about 270°C. Besides, crystals of lead 
iodide grown by the gel method also exhibit arcing (Agra- 
wal, Chadha & Trigunayat, 1970). Secondly, the growth of 
incoherent nuclei on top of a flat surface, resulting in small 
gaps between different domains of the crystal, would affect 
the shape and the size of the spots. The arcs might be 
formed but the spots on them would not be resolved be- 
cause of random growth of incoherent nuclei. Besides, on 
irradiating the crystal partially by the X-ray beam, the 
shape of the diffraction pattern would not change; however, 
the size of the arcs might be affected; this again is contrary 
to experimental observations (Agrawal & Trigunayat, 
1969a). Furthermore, the arcing is not a surface phe- 
nomenon. It is also observed after cleaving off layers from 
the surface and it is, in general, found that the arcing de- 
creases in a regular fashion from the lower to upper basal 
surfaces (Gyaneshwar & Trigunayat, 1972). The latter 
have also found that the closed rings on Laue photographs 
do change into arcs when crystals are peeled layer by layer. 
Under no circumstances can the formation of regular 
hexagonal, trigonal, etc. types of rings corresponding to 
each reftexion be understood on the basis of paracrystalline 
distortions randomly distributed in the crystals. When a few 
CdI2 crystals, grown from solution at room temperature, 
were re-examined after nearly four years, changes in arcing, 
streaking and polytypism were observed (Agrawal, 1972); 
this cannot be explained on the basis of paracrystalline 
distortions induced during crystal growth. It may be 
pointed out that the model of a paracrystal is more accept- 

able for fibrous crystals, which are in fact built up on a two- 
dimensional lattice, one of the vectors being parallel to the 
axis of the fibre, and the other perpendicular. The fluctua- 
tions of these vectors arise from essentially different sources, 
viz. the interactions along and between the chains. 
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Property of the fundamental equations of the dynamical theory of X-ray diffraction given in terms of the 
electric field E(r), instead of D(r), is discussed, and some merits of the equations in terms of E(r) are pointed 
out. 

The fundamental equations of the dynamical theory of 
X-ray diffraction according to Laue's formulation are 
usually given by the form 

k ~ - K  2 
k~ Dh : £ Xh- gDg[xk hI (1) g 

(Laue, 1960), where K ( =  v/e) is the wave number of X-rays 
in the vacuum space, kh= k0+ h, k0 being the wave vector 
of the primary beam in the Ewald (or Bloch) wave field 
in the crystal, and h or g is the reciprocal-lattice vector; 
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D h is the Fourier component of the field D(r) which is 
defined by 

D(r) = e(r)E(r) (2) 

where E(r) is the electric field of the X-ray wave, and Xh 
is the Fourier component of z(r), which is a quantity cor- 
responding to 4re times the 'electric susceptibility' and 
related to the 'dielectric constant' e(r) as 

L [  e2 ~ 0(r) 
e ( r ) - -1 -  n \ mc 2 ] ~ = l + z(r) (3) 

where 0(r) is the electron density in the crystal. The nota- 
tion Dgt-kh~ means the component vector of Dg parallel 
to a plane perpendicular to kh. 
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Laue's formulation is based on the electromagnetic 
theory in vacuum, in which E(r) is a basic microscopic quan- 
tity. It is, therefore, valuable to write down the fundamental 
equations in terms of E(r). Using the Maxwell equations 

rot E (r) = - 2rriKH(r) / 
rot H( r )=  2rciKD(r) , (4) 

and the expansion 

E(r) = ~ Eh exp [-- 2rci(k h • r)] ,  (5) 
h j  

we can readily derive the equations 

k~a. Eht±klal- K z " E h 
K z . . . . .  ~ Zh-gEg.  (6) 

g 

The appearance of the form Eht~-kh~ in the left-hand side 
is due to the fact that the field E(r) is not purely a trans- 
verse wave, because of its property that div E ( r ) ¢ 0  in 
general (see also Battermann & Cole, 1964). 

Between Eh and Dh, there is a relation 

E n =  Dh-- ~ Z£_gDg = Dn(1 - X o ) -  ~ Z;_gDg (7) 
g g:#h 

where Z'  is the quantity defined by 

1 1 
e(r) = 1 +;~(r) - 1 - z ' ( r ) .  (8) 

Considering the fact that Z,, or • ~ is a very small quantity 
of the order of 10-4~ 10 -6, we may disregard the perpen- 
dicular components of Dg to D h in the summation terms 
in (7). Then, Eh is approximated to be parallel to Dh and, 
accordingly, perpendicular to kh. Equation (6) is, thus, 
approximated as 

k ~ - K  2 
K 2 Eh = ~ Zh- gEg. (9) 

g 

It should be pointed out, in this connexion, that equa- 
tion (1) also involves the approximation which is of the 
same order as that assumed in deriving (9). Namely, in 
deriving equation (1) an approximation is introduced that 

1 
+ z ( r )  ~ 1 - ;~(r) (10) 

in place of the exact equation 

1 
1 + z ( r ) .  = 1 - , ~ ' ( r ) =  1 - ;~(r){1 - z ( r ) }  + . . . .  (11) 

The strict form of the equations for Dh should, therefore, 
be given by replacing Zh in (1) by Z£. 

Equation (9) has the following formal merits: 
(a) Its form is simpler than (1), especially in the fact that 

K ~ appears in the denominator of the left-hand side term, 
instead of k~, in (1). 

(b) Its form is quite similar to the scalar fundamental 

equations for electron diffraction, which are written as 

k i - K  2 
Zh- gVg K 2 Vh = ~. (e) (12) 

g 

where ~h is the amplitude of a component of the electron 
Bloch wave, and Z(~ ) is the Fourier component of  Z(e)(r) 
which is defined by 

eV(r) 
X(')(r) = E - ,  (13) 

E being the total energy and V(r) the periodic potential in 
the crystal (Takagi, 1969). 

(c) If  all k h in an n-wave problem are included in the 
same plane and if we are concerned with the perpendicular 
mode E ' ( r )  of E(r) to this plane, then E~,_l_k h [refer also to 
equation (7)]. In this problem, equation (9) is as strict as 
is equation (6) (Batterman & Cole, 1964). 

(d) The boundary conditions for (9) can be expressed in 
a simple form as that with respect to (1). 

An example showing a merit due to the simple form of 
(9) may be found in the fact that the equation of the dis- 
persion surface in the two-wave problem for the perpen- 
dicular mode of E(r) can be obtained most honestly from 
(9) in the form 

~0~h = J4- \ -~0-  / Z h Z - h  = ¼  ~'h Z -  h (14)  

where ~o=ko-xo,  ~h=kh--K0, X2o=K2(l+jgo) and no (the 
mean refractive index)=(1 +X0) a/2. In most texts the dis- 
persion equation has been given dropping the index no, 
probably not only because of the very small deviation of 
no from unity, but also because of some arbitrariness in- 
troduced in the approximation in dealing with the rather 
cumbersome form of (1). 

For  most practical purposes, equations (1) and (9) give 
essentially the same results, and the numerical difference 
between them is trivial. However, in addition to the formal 
merits of (9), since E(r), being directly related to the vector 
potential A(r), is a more basic microscopic quantity than 
D(r), we may state at least that there is no positive necessity 
to stick specifically to the equation (1) in terms of D(r). 
The theoretical meaning of equation (9) in terms of E(r) 
has already been discussed briefly in a previous paper by 
one of us (Ohtsuki, 1964). The present note is to stress 
again this statement by adding some amendments. 
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